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Abstract-The study is aimed at the evaluation of the relationship between the measured (or
imposed) constant curvature of the coating of an optical glass fiber and the elastic curve of the fiber
itself. It is shown that the buffering effect of the coating is different for different points along the
curved area and depends on the length of this area, and the compliance of the coating. In the case
of a very short curved area and/or a very compliant coating, the curvature of the glass fiber is
smaller than the curvature of the coating and increases wit:l an increase in the length of the curved
area and the coating stiffness. In the case ofa long curved area and/or a stiffcoating, both curvatures
are practically the same for almost the entire curved area. Only when approaching the ends of this
area, the ratio of the curvature of the glass fiber to the coating curvature somewhat increases (by a
factor of 1.043) and then rapidly drops to unity at the ends. There are, however, some "intermediate"
unfavorable combinations of the lengths of the curved area and coating compliances that result in
curvature ratios exceeding (by up to a factor of 1.086) the coating curvature in the midportion of
the curved area. It is shown that such a paradoxical situation is due to the redistribution of the
interfacial radial load at certain combinations of the lengths of the curved areas and spring constant
of the coating. For a current AT&T dual-eoated fiber design with a 30 /.1m thick silicone primary
coating, the curvature ratio is greater than unity when the lengths of the curved area fall within the
range between 1.84 and 4.27 mm, and reaches the 1.086 value when the length of curved area is
about 2.44 mm.

INTRODUCTION

Clearly, the curvature of an optical glass fiber in a glass-coating composite can be different
from the measured (or imposed) curvature of its coating. This is due to the buffering effect
of the coating material. Intuitively it is felt that such an effect can be essential in short fibers
(or in fibers with short curved portions) especially with compliant (low modulus) coatings.
If this effect is appreciable, it should be accounted for in those cases, when the actual local
curvature of the glass fiber is important, but cannot be determined by direct measurements.
Frequently, information on fiber curvature is needed to assess the added transmission losses
and/or the level of bending stress in the glass fiber.

The present analysis is aimed at the evaluation ofthe relationship between the curvature
of the glass fiber and the curvature of the coating. The investigation is based on an analytical
stress model in which the glass fiber is treated as a beam lying on an elastic foundation [see,
for instance, Timoshenko and Young (1965)], provided by the coating material.

MAJOR ASSUMPTIONS

The following major assumptions are used in this analysis:

(1) The curvatures 'ofthe glass fiber and its coating are small enough, so that the linear
theory of bending of beams [see, for instance, Timoshenko and Young (1965)] can be
applied.

(2) The deflections of the glass fiber can be evaluated from the radial (normal) inter­
facial stresses only, without consideril'l:g the interfacial shearing stresses. As is known [see,
for instance, Suhir (1989)], both radial (normal) and axial (shearing) interfacial stresses
arise in a bi-material composite structure subjected to thermally induced or external loading.
However, the curvatures of the components of such a composite are affected by the normal
stresses to a significantly greater extent than by the shearing stresses. Therefore, having in
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mind that this analysis is aimed at the evaluation of curvatures rather than stresses. the
above assumption is thought to be valid.

(3) The compatibility condition for the deflections can be written as

(I)

where p(x) is the radial (normal) loading, wc(x) and wo(x) are the deflection functions of
the coating and the glass fiber, respectively, and K is the spring constant of the coating.
The relationship (I) states that the loading acting on the glass fiber is proportional to the
difference in the deflections of the coating and the fiber itself. This relationship uses an
obvious assumption that the load p(x) at the given x can be evaluated on the basis of a
"two-dimensional approach", i.e. depends on the deflections in the given cross-section only,
and is not affected by the strains and stresses in the adjacent cross-sections.

(4) The spring constant K remains unchanged throughout the entire curved area and
can be computed on the basis of a solution to a corresponding two-dimensional (plane
strain) problem of the theory of elasticity (Vangheluwe, 1984) :

(2)

Here ro is the glass fiber radius, r I is the radius of the (primary) coating, and E 1 and v I are
the elastic constants of the coating material. This formula has been obtained for a dual­
coating system, assuming absolutely rigid secondary coating, and therefore the coating
compliance is due to the primary coating only. If this formula is applied to single-coated
fibers it is thought to result in a reasonable overestimation of the spring constant. Such an
overestimation is associated with the fact that an assumption of the nondeformability of
the outer contour of the (primary) coating, which underlies eqn (2), is justified for a single
coating system to a lesser extent than for a dual-coated design. We would like to point out
that if the compliance of the secondary coating is not negligibly small compared to the
compliance of the primary coating, then a more complicated formula, accounting for the
finite compliance of the secondary coating, should be applied (Suhir, 1988a).

ANALYSIS

Basic equation and boundary conditions
Let a portion of a glass-coating composite be bent on a circular mandrel, so that the

radius of curvature Rc of the coating is constant. Because of the finite compliance of the
coating, the radius Ro(x) of curvature of the glass fiber can be different from the radius Rc

(Fig. I). This results in the radial interfacial forces p(x) which must satisfy the following
equation of equilibrium:

(3)

Here I is half the length of the curved area, EoIo is the flexual rigidity of the glass fiber, Eo
is Young's modulus of glass, 10 = (n/4)rri is the moment of inertia of the glass fiber cross­
section, and ro is its radius. The origin is in the middle of the curved area on the centerline
of the coating. Equation (3) states that the external bending moment due to the load p(x)
must be equilibrated by the elastic bending moment acting over the cross-sections of the
glass fiber.

The radii of curvature of the glass fiber and its coating can be expressed through the
second derivatives of the deflection functions as
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Fig. I. Coated optical fiber subjected to bending.

Then eqn (1) can be written as follows:

I I p"(x)
Ro(x) = R.c -~ (4)

Substituting this relationship into the equilibrium condition (3), we obtain the following
integral equation for the unknown load function p(x) :

Ix I' Kp"(X)+4Q(4 p(~/)d~' d~ =-,
-I -I R.c

(5)

where

(6)

is the parameter of the coating compliance. From (5), by differentiation, we find:

(7)

(8)

Since no other loads, except p(x) , act on the glass fiber, this load must be self-equilibrated,
i.e. the following conditions are to be fulfilled:

(9)

These conditions reflect the requirement that both the shear force and the bending moment
at the end x = I must be zero. Applying the first of the conditions (9) to eqn (7) and the
second of these conditions to eqn (5), we conclude that the function p(x) must satisfy the
following boundary conditions:
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p"'(l) = 0, p"(l) = K.
Rc

( 10)

Interfacial radial load

The solution to eqn (8), satisfying the conditions (10), can be sought in the form:

where

(II)

Po = p(O) = (12)

is the load per unit fiber length in the middle of the curved area, the parameter u is expressed
as

and the functions entering the formulae (II) and (12) are

VO(IXX) = cosh IXX cos IXX

I
V I (IXX) = --= (cosh IXX sin IXX +sinh IXX cos IXX)

j2

V2 (IXX) = sinh IXX sin IXX

V1(IXX) =_L= (cosh IXX sin IXX - sinh IXX cos IXX)
j2

6 cosh u sin u - sinh u cos u
u2 -- ---sInh2;-+ sin-~-----

The functions (14) obey the following simple rules of differentiation:

(13)

(14)

(15)

VO(IXX) = -IXj2V3 (IXx),

V;(IXX) = IXji VI (IXX),

V:1(exx) = IXj~ VO(IXX)} ,

V,(exx) = IXj2V2 (IXx)
(16)

which make the utilization of these functions of convenience. Obviously,

The function (15) is introduced in such a way that it is equal to unity in the case of an
ideally compliant coating (K = 0) and tends to zero for an absolutely stiff coating (K -> CD).

The load at the ends of the curved area is

(17)

where the function
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3 sinh 2u - sin 2u
X2(U) = 2u2 sinh 2u+sin 2u
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(18)

is also equal to unity for K = 0 and tends to zero for K -+ 00. The tabulated values of the
functions XI(U) and X2(U) are given in Table l.

In the case of short curved areas and/or very compliant coatings (u < I) the formulae
(II), (12) and (17) yield:

(19)

Hence, in this case the load function p(x) is expressed by a parabola and therefore has a
single internal extremum (minimum) at the origin.

In order to find out whether, if the u value is not small, additional internal extrema
can occur on the curve p(x), we form, in accordance with the well-known procedure [see,
for instance, Arfken (1985)] an equation p'(x) = O. This results in the following equation
for the locations x = x* of the expected extrema:

VI (u) V2(ax*) - V3(u) Vo(ax*) = 0,

or

Table I

/l c/J ,(JJ.) x,(/l) X2(JJ.)

0 1.000 1.000 1.000
0.1 1.000 1.000 1.000
0.2 1.000 1.000 1.000
0.3 0.999 0.999 0.999
0.4 0.996 0.996 0.997
0.5 0.990 0.991 0.993
0.6 0.979 0.982 0.985
0.7 0.961 0.967 0.973
0.8 0.935 0.946 0.956
0.9 0.899 0.917 0.931
1.0 0.852 0.878 0.899
J.l 0.795 0.830 0.859
1.2 0.728 0.774 0.813
1.3 0.653 0.712 0.761
1.4 0.573 0.645 0.705
1.5 0.492 0.576 0.648
1.6 0.411 0.509 0.591
1.7 0.335 0.444 0.537
1.8 0.264 0.384 0.483
1.9 0.201 0.328 0.439
2.0 0.144 0.279 0.397
2.2 0.054 0.197 0.325
2.37 0.000 0.147 0.279
2.4 -0.009 0.136 0.269
2.6 -0.051 0.092 0.226
2.8 -0.074 0.060 0.193
3.0 -0.085 0.038 0.167
3.2 -0.087 0.023 0.146
3.4 -0.082 0.012 0.129
3.6 -0.073 0.006 0.115
3.8 -0.063 0.002 0.104
4.0 -0.052 -0.001 0.094
4.2 -0.041 -0.002 0.085
4.4 -0.031 -0.003 0.078
4.6 -0.022 -0.003 0.071
4.8 -0.015 -0.002 0.065
5.0 -0.009 -0.002 0.060
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Fig. 2. Ratio of curvature of the glass fiber to the curvature of the coating in the middle of the
curved portion of the fiber.

tanh utanh (u ~r)+tan utan (u ~l') = o. (20)

The solution to this transcendental equation is plotted in Fig. 2. As is evident from this
solution, no additional internal extrema occur, if the u value is below u I = 2.365, which is
the root of the equation

tanh u+tan u = 0,

or

cosh usin u+sinh ucos u= o. (21 )

As has been shown above, the single extremum at the origin in this case is minimum. This
conclusion can also be formally made on the basis of the sign of the second derivative pU(x) :
If this derivative, calculated at x = x*, is positive, the extremum at this location is a
minimum; if it is negative, then the function p(x) has a maximum at this location [see, for
instance, Arfken (1985)]. With expression (II) for the function p(x), we conclude that if
the condition

(22)

is fulfilled, the extremum at x = x* is a minimum. When x* = 0, this inequality yields
Vj(u) > 0, or

cosh usin u+sinh ucos u> 0, (23)

and therefore the extremum at the origin is a minimum.
The inequality (23) is violated for u values exceeding UI = 2.365. This means that the

"global" minimum at the origin becomes a local maximum, while two additional extrema
occur on both sides of the origin. With the further increase in the u value the local (negative)
maximum at the origin decreases in its absolute value, while the absolute values of the new
internal minima go up, and these minima shift towards the ends of the curved area (Fig.



Curvature of an optical glass fiber and its coating 2431

2). If, for instance, u = n, then, in order that the product of the hyperbolic tangents in eqn
(21) remains finite, one should put tan (u(x.ll» equal to infinity. Then we have
u(x.fl) = n12, so that x. = (//2). With u = n and ax. = n12, condition (22) is fulfilled, and
therefore the extrema at x. = 112 are, indeed, minima. However, condition (23) is violated,
and therefore the extremum at the origin is a local maximum.

For sufficiently large ax. values, the hyperbolic tangents in eqn (20) are close to unity,
and this equation can be simplified as follows

(24)

Then we obtain:

(25)

This approximate formula gives satisfactory results for u > n.

Curvature ratio
The ratio X(x) = RcIRo(x) of the curvature radii (or curvatures) can be obtained from

(4) and (II):

(26)

where the function

V I (u) cosh u sin u+sinh u cos u
4> I(u) = Vo(u) VI (u) + V

2
(u) V

3
(u) = 2 sinh 2u+ sin 2u (27)

characterizes the curvature ratio at the origin, and, like the functions Xl(U) and X2(U), changes
from unity to zero, when the U value changes from zero to infinity (Table I). As is evident
from (21) and (27), the function 4>1(U) is negative in the region between UI = 2.365 and
U2 = ~n. In this region the curvature ratio

Xo = X(O) = 1-4>I(U) (28)

at the origin is greater than unity, i.e. the curvature of the glass fiber becomes greater than
the coating curvature (Fig. 2). The maximum XO value occurs at U = n and is
Xo = I + Ilcosh n = 1.0864. In the range n < u < ~n the increase in the coating compliance,
leading to smaller u values, results in larger (not smaller!) curvatures of the glass fiber at
the origin. As follows from the results of the analysis of the behavior of the function
p(x), this paradoxical situation is due to the redistribution of the interfacial load. Such a
redistribution occurs at certain combinations of the coating compliance and the length of
the curved area. Note that this phenomenon was observed experimentally (Marinis et al.,
1984) and analysd theoretically (Suhir, 1988b) earlier in connection with the mechanical
behavior of external electrical leads in compliant-leaded surface-mounted electronic
devices.

Although the function Xo(u) oscillates with an increase in the u value, its amplitudes
fade so rapidly that, in effect, only its first maximum at u = n is appreciably different from
unity (Fig. 2). Indeed, since all the extrema of this function occur in the region of relatively
large U values (u > 2), eqn (28) can be replaced by the following approximate relationship:
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Xo(U) = 1-2 e- II (cos u+sin u).

The maxima of this function are

Xmax = 1+2e- mrr m= 1,3,5, ...

While the first maximum (m = I) is equal to 1.0864, the second maximum (m = 3) is only
1.00016, i.e. very close to unity. Therefore, when the combination of the coating compliance
and the length of the curved area is such that the u value is greater than U2 = ~n = 5.50,
the change in the u value has a negligible effect on the glass fiber curvature at the origin.

Applying the same approach as we used earlier when analysing the behavior of the
load function to the curvature ratio X(x), we find that the extrema of this ratio occur at the
locations x = Xc which can be determined from the equation

or

( Xc) ( Xc)tanh u tan u I -tan u tanh uT = 0, (29)

and that the curvatures of the glass fiber and its coating have the same sign if the condition

(30)

is fulfilled. The nUIl}erical solution to the transcendental equation (29) is plotted in Fig. 2,
and is illustrated by the plot in Fig. 3. It is shown in this figure how the ax,. = u(xxll) value
can be obtained for the given u value. As is evident from the obtained solution, no additional
internal extrema occur on the curvature ratio curve X(x), if the u value is below ~n = 3.927.
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In this case the extremum at the origin is the only one, and, since the inequality (30) is
fulfilled, the curvature of the glass fiber has the same sign as the coating curvature through­
out the curved area. When the u value is large enough, and therefore the xciI ratio is not
small either, eqn (29) can be simplified as follows:

(31)

Then we obtain:

(32)

Comparison of this approximate formula with the exact solution based on eqn (29) shows
that this formula is accurate enough for u > 4.3. The comparison of eqn (32) with eqn (25)
indicates that the external extrema of the load function are located closer to the ends of the
curved area than the extrema of the curvature ratio. Substituting (32) into the condition
(30), we conclude that the latter condition is fulfilled. This means that the sign of the glass
fiber curvature at the locations x = Xc is the same as the sign of the curvature of the coating.

For sufficiently large u values eqn (27) can be simplified as follows:

x(x) = l_e-~(l-x) [sin a(l-x)+cos a(l-x)]. (33)

As is evident from this formula, the curvature ratio can be greater than unity, if the
expression in brackets is negative. Introducing the x = Xc value from (32) into (33), we
obtain: Xc = 1+e- n = 1.0432. Note that this value is independent of the parameter u and
its deviation from unity is twice as small as the deviation of the maximum value Xo of the
curvatures ratio at the midpoint of the curved area. This, as has been shown earlier, takes
place for u = n. The calculated Xc values are plotted in Fig. 2.

NUMERICAL EXAMPLES

In the case of a single-coated fiber, when a 62.5 Jim thick Borden Type 1 polymeric
material (E. = 5000 psi, VI = 0.495, rl = 125 Jim) is used to coat a glass fiber
(Eo = 10.5 x 106 psi) with aradius ro = 62.5 Jim, eqn (3) yields: K = 178,690 psi. From (7)
we find: a = 4.341 mm- I

. Using data from Fig. 2, we find that when the length of the
curved area is smaller than

UI 2.365
21 = 2 - = 2 x -- = 1.09 mm

a 4.341

(8.7 of the glass fiber diameter), the maximum curvature of the glass fiber is smaller than
the curvature of the coating. If the length of the curved area is between 1.09 mm and

U2 5.498
2/= 2- = 2x -- = 2.53mm

a 4.341

(20.2 of the glass fiber diameter), then the maximum curvature of the glass fiber exceeds
the coating curvature. The maximum curvature of the glass fiber takes place for a

2n 2n
21 = - = -- = 1.45 mm

a 4.341

long curved area, and is by a factor of 1.0864 greater than the coating curvature. If the
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Fig. 4. The longitudinal distribution of the interfacial load p(x), the deflections of the glass fiber
It'o(.x), the coating 1I',(x), and the fiber-to-coating curvature ratio X(x).

curved area is longer than 2.53 mm, the curvature of the glass fiber in its midpoint is not
different from the curvature of the coating. If, for instance, the curved area is 5 mm long
(l = 2.5 mm), then the u value is u = 10.852, and the maximum curvature ratio Xc = 1.0432
occurs at the points

Xc n n
I = 1- u = 1- 10.852 = 0.7105.

This corresponds to the distances of 0.724 mm from the ends of the curved area.
In the current AT&T dual-coated fiber design, the primary coating is about 30 ,um

thick, and the elastic constants of the material (silicone) are about £1 = 100 psi and v I = 0.5.
Then the calculated spring constant value, assuming absolutely rigid secondary coating,
is about K = 44,270 psi, and therefore IY. = 3.062 mm ... I. In this case the range of the fiber
lengths which result in the midpoint curvatures of the glass fiber exceeding the coating
curvature is between 1.54 and 3.59 mm. The curvatures of the glass fiber for the curved
area lengths below 1.54 mm are smaller than the curvature of the coating. In the case of
curved areas longer than 3.59 mm, the maximum curvature ratios occur at the locations
defined by eqn (33). If, for instance, the curved area is 5 mm long, then the u value is
u = 7.655, so that XciI = 0.5896. This corresponds to the distances of 1.126 mm from the
ends of the curved area. The load function p(x), the coating deflections wcCx), the glass
fiber deflections wo(x), and the curvature ratios X(x), calculated for the AT&T dual-coated
fiber design, are shown in Fig. 4 for the coating radius R o = 5 mm and the length of the
curved area of 2 mm.

CONCLUSION

A simple and easy-to-apply analytical stress model has been developed to evaluate the
elastic curve of an optical glass fiber with a constant (measured or imposed) bend radius
of its coating. We show that in order to predict the behavior of a glass fiber whose coating
is subjected to bending one should compute first parameter u. This parameter depends,
in addition to Young's modulus and diameter of the glass fiber itself, also on the length of
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the curved area, as well as Young's modulus and outer diameter of the (primary) coating. In
the range 0 < u < 2.365 (short curved areas and/or very compliant coatings), the maximum
curvature of the glass fiber occurs at the midpoint of the curved area, never exceeds the
curvature of the coating, and increases with an increase in the length of the curved area
and the spring constant (stiffness) of the coating. If the calculated u value is greater than
7n/4 = 5.50, the curvature of the glass fiber in the midportion of the glass-coating composite
is practically the same as the coating curvature. In this case the maximum curvatures of the
glass fiber are shifted towards the ends of the curved area and exceed the curvature of the
coating by a factor of 1.043. These maxima are the closer to the ends of the curved area,
the greater the u value is (i.e. the longer is the curved area and/or the greater is the spring
constant of the coating). The magnitudes of these maxima are independent of the u value,
i.e. do not change with the change in the length of the curved area and/or the coating com­
pliance. If the combination of the length of the curved area and the coating compliance is
such that u value falls within the range 2.365 < u < 5.50, then the maximum curvature of the
glass fiber is greater than the curvature of the coating. The most unfavorable combination of
the length of the curved area and the coating compliance corresponds to u = n and results
in the curvature of the glass fiber at its midpoint exceeding by a factor of 1.086 the curvature
of the coating. The deviation of the glass fiber curvature from the curvature of the coating
is in this case twice as large as this a deviation in the case of a long curved area and/or a
stiff coating (u > 5.50). In the range of the u values between 11: and ~11: = 5.50, the increase
in the coating compliance (for the given length of the curved area) results in larger (not
smaller!) curvatures of the glass fiber at its midpoint. This paradoxical situation is due to
the redistribution of the interfacial load acting on the glass fiber at different combinations
of the lengths of the curved areas and coating compliances.
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